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Free-stream turbulence (FST) is perhaps the most important source inducing by-pass
transition in boundary layer flows. The present study describes the initial energy
growth of streamwise-oriented disturbances in the boundary layer originating from
the presence of FST with intensities between 1.4% and 6.7%, but the study is mainly
focused on the modelling of the transition zone. For this study three passive and one
active turbulence-generating grids were used. The active grid was used in order to
vary the turbulence intensity (Tu) without changing the setup in the test section. It
is shown that the initial disturbance energy in the boundary layer is proportional to
Tu2. The experiments also show that the energy grows in linear proportion to the
Reynolds number based on the downstream distance. Furthermore the transitional
Reynolds number is shown to be inversely proportional to Tu2 for the whole range
of Tu studied. The intermittency in the transitional zone was determined and it
was shown that the intermittency function has a universal shape if the downstream
distance is scaled with the length of the transition zone. The Reynolds number based
on this transition zone length was found to increase linearly with the transition
Reynolds number; however it was also noted that this non-dimensional length has a
minimum value. With these results we were able to formulate an expression for the
spot production rate which has a better physical base than previous models.

1. Introduction
It is known that a boundary layer subject to free-stream turbulence (FST) develops

unsteady streaky structures with high and low streamwise velocities (for reviews see
Kendall 1998; Westin 1997). This leads to large-amplitude, low-frequency fluctuations
inside the laminar boundary layer when measured by a stationary hot wire. Flow
visualization photos show the presence of streaky structures (see e.g. Matsubara &
Alfredsson 2001), and it is apparent that the FST gives rise to longitudinal structures in
the flow with a relatively well-defined spanwise scale. In flow visualization experiments
the streaks have been seen to develop a streamwise waviness, which may break down
into turbulent spots. These spots subsequently grow until the boundary layer is fully
turbulent.

Over the past two decades several experimental studies have investigated distur-
bance growth and transition under the influence of FST. Kendall (1985) observed low-
frequency fluctuations in the boundary layer that grow in linear proportion to x1/2

(i.e. proportional to the laminar boundary layer thickness, δ). He also observed the
occurrence of elongated streamwise structures with narrow spanwise scales. Westin
et al. (1994) made detailed measurements of a laminar boundary layer disturbed by
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FST and showed among other things that the Blasius profile was only slightly modi-
fied, despite urms levels of about 10% inside the boundary layer before breakdown.
They also confirmed that the growth of urms was proportional to x1/2. It has been
possible to put these results into the theoretical framework of so-called algebraic
or transient growth, see for instance Andersson, Berggren & Henningson (1999)
or Luchini (2000). This theory shows that streamwise elongated structures may grow
in amplitude as x1/2 even at low Reynolds numbers and comparisons between the
theoretical amplitude variation and the measured distributions of urms show excellent
agreement. Transient growth theory is linear, which is why a comparison with FST-
induced transition only should be adequate until secondary instabilities on the streaks
set in and nonlinear effects become significant. Fransson et al. (2004) investigated
stationary and steady streaks, generated by means of an array of roughness elements
in the spanwise direction. They showed that transient growth theory is in good
agreement with the experimentally observed steady streaks throughout the entire
transient growth region (i.e. both through growth and decay).

The spanwise scale of the streaks decreases with increasing turbulence intensity (Tu)
and for the Blasius boundary layer this scale seems to adapt to the boundary layer
thickness after an initial mismatch (see Matsubara & Alfredsson 2001). Fransson &
Alfredsson (2003) carried out FST experiments on an asymptotic suction boundary
layer and showed that with a reduction of the boundary layer thickness by a factor
of two the spanwise scale of the streaks was maintained, giving rise to a spanwise
widening of the streaky structure relative to the boundary layer thickness, in contrast
to the results by Matsubara & Alfredsson. Furthermore, they conclude that the most
amplified spanwise scale predicted by algebraic growth theory is approached for
increasing Tu. The results by Yoshioka, Fransson & Alfredsson (2004) in boundary
layers with suction indicate that the observed spanwise scale is a complex result of
the initial growth near the leading edge in the receptivity region, the FST scales and
the downstream development of the boundary layer.

There have also recently been some direct numerical simulations of the FST
transition process (see Jacobs & Durbin 2001; Brandt, Schlatter & Henningson 2004).
In these cases the leading-edge region is not simulated; instead the simulation is
started at some downstream position with a turbulent free stream. The simulations
also show the generation of longitudinal streaks and the breakdown to turbulent
spots. Brandt et al. showed that both sinuous and varicose secondary instabilities of
the streaks may be a precursor to the formation of turbulent spots.

In experiments there are two essential factors that determine the response to the
forcing (the so-called receptivity process) by the FST. First, the geometry of the
leading edge plays a role. A symmetric leading edge gives rise to a pressure suction
peak, which results in a local negative pressure gradient followed by a positive one.
This is the reason for using an asymmetric leading-edge design (see e.g. Klingmann
et al. 1993; Fransson & Alfredsson 2003; Fransson 2004), which is also necessary
to obtain good agreement with linear stability theory. Secondly, the nature of the
disturbances that affect the boundary layer is important. In case of FST disturbances
these are described by the characteristic scales of the turbulence and the energy-
frequency spectra of the various components. Of course there may also be other types
of forcing which are unwanted, such as vibrations or noise, and experimental results
may therefore differ from facility to facility.

In order to further understand the transition process, results from theory, simula-
tions and experiments need to be studied and compared. Simulations are quite time
consuming and not suitable for parameter variations; however they can provide
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Figure 1. Schematic view of the experimental setup (dimensions in mm).

details of the flow which are not available in experiments. Another drawback is that
the simulations so far have not covered the leading-edge region which probably has
an influence on the subsequent disturbance development. On the other hand various
experiments give quantitatively different results for the transition position which
may be due to differences in the experimental conditions. One such factor that may
influence the transition is the effect of different FST scales on the receptivity at the
leading edge. It would therefore be advantageous to perform experiments with small
variations of the FST scales, in order to reduce such an influence on the experimental
results. However, to design turbulence-generating grids that generate different Tu
levels and at the same time have the same turbulence scales (both regarding the
turbulence decay and the energy-containing scales) is a demanding task, and such
studies may therefore be more suitable for direct numerical simulations where such
requirements may be controlled easily (see e.g. Brandt et al. 2004). The major part of
the results in this paper is from an active grid which allows an easy change of the Tu
level but for which, however, the problem of different generated scales remains.

The present paper starts with a brief introduction of the experimental setup fol-
lowed by a thorough description of the turbulence-generating grids. Thereafter, a
standard intermittency estimation technique with an improvement on the threshold
determination is described. Finally, the results are shown and discussed in terms of
modelling and transition prediction.

2. Experimental setup
The experiments were performed in the MTL (Minimum Turbulence Level or

Mårten T. Landahl named after its late initiator) wind-tunnel at KTH where a 4.2 m
long test plate was mounted horizontally in the test section. Over the past decade
several studies on different aspects of FST-induced by-pass transition have been
reported from the KTH Mechanics group with roughly the same experimental setup
(refer to Matsubara & Alfredsson 2001 for details of the experimental setup). Briefly,
the test section is 7 m long with a cross-sectional area of 1.2 × 0.8 m2, and is equipped
with a five-degree traversing mechanism (namely, (x, y, z)-directions plus two angle
movements); see figure 1 for a schematic view of the flat plate setup. The flat plate
has an asymmetric leading edge which together with the adjustable trailing flap has
been designed in order to obtain a near zero pressure gradient in the leading edge
region also.

Recently, the flow quality of the MTL wind tunnel was re-confirmed after 10 years
in operation. An important aspect of wind-tunnel flow quality is the level of turbulence
intensity in the test section, but despite this, there is no standard procedure for
selecting the frequency range to be used in specifying tunnel turbulence levels. In
transition experiments this issue becomes even more delicate since it is desirable that
all disturbances are controlled by the experimentalist. Here, we therefore provide both
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Grid Bar geometry M (mm) dp (mm) Sg Tu (%) �L

A circular 36 6 0.31 2.2–2.5 1600
B circular 23 3.5 0.28 1.5 1600
E square 50 10 0.36 5.3–6.7 1000
G circular 50 5 0.19 1.4–5.3 1000–1600

Table 1. Passive (A, B, and E) and active (G) grid characteristics. See text for definitions.

the high-pass filtered and the unfiltered data of the turbulence intensities reported
in Lindgren (2002), in which the cut-off frequency (fc = U∞/λc) was chosen such that
all disturbances with wavelengths fitting in the test section cross-section were to be
conserved. As reported in Lindgren the cut-off wavelength (λc) was chosen to be 2.0 m,
i.e. the sum of the two test section side lengths, in order to allow for some margin.
At 25 m s−1 the high-pass filtered and the total unfiltered streamwise turbulence inten-
sities are less than 0.025% and 0.080%, respectively. Both the cross-flow turbulence
intensities are less than 0.035% and 0.040% for the high-pass filtered and unfiltered
intensities, respectively.

Furthermore, the total pressure and temperature variations are less than ±0.06%
and ±0.05 ◦C, respectively. For full details of the tunnel the interested reader is refered
to Lindgren (2002). The data in the present experiments were collected with hot-wire
anemometry of both single- and X-probe type. The single probe was calibrated in the
wind tunnel against a Prandtl tube and then a modified King’s law (cf. Johansson &
Alfredsson 1982), taking into account the natural convection, was used for curve
fitting. For the X-probe an angle calibration was carried out and a two-dimensional
fifth-order polynomial was fitted to the calibration data, giving U and V as functions
of the obtained voltage pair.

3. Turbulence-generating grids
Free-stream turbulence is usually generated with the use of grids made of bars with

circular or square cross-section. The scale and intensity of the FST is related to the
geometry of the bars and the grid, i.e. the mesh width (M), bar width (dp) and the
corresponding geometric solidity (Sg), as well as the Reynolds number. The turbulence
level usually increases with the solidity, but also depends on the flow velocity and
hence the Reynolds number of the grid. An alternative, which makes it possible to
generate different FST intensities without changing the set-up in the test section, is to
use an active grid with injection of secondary flow. An example of such an active grid
was studied by Gad-El-Hak & Corrsin (1974) where both coflow and counterflow
injection were compared with the zero injection case (however in their case the ‘grid’
only consisted of horizontal pipes).

In the present study the FST was generated by four different grids, three passive
grids (A, B, E), and one active grid G, mounted at different positions (�L = 1000–
1600 mm) upstream of the leading edge. Grid G is active in the sense that it ejects
secondary flow in the form of jets directed upstream, i.e. counterflow injection. The
free-stream velocity (U∞) was varied in the range 2–14 m s−1 and a variation of �L

provided streamwise turbulence levels (Tu = urms/U∞) in the range 1.4% to 6.7% at the
leading edge of the plate. For all grids the transverse turbulence level (Tv = vrms/U∞)
was slightly lower at the leading edge. In table 1 the main characteristics of all four
grids are summarized.



Transition induced by free-stream turbulence 5

3.1. Turbulence scales

Downstream of the grid the turbulence decays and the typical power-law decay can
be described according to

Tu =
urms

U∞
= C(x − x0)

−b, (3.1)

where x0 is a virtual origin of the grid, the exponent b gives the decay rate and the
constant C gives the level for a particular grid and Re. A simple analysis (see e.g.
Tennekes & Lumley 1997) gives b = 0.5. Recent works, both experiments and direct
numerical simulations, have shown the value to be closer to b = 0.6 (see e.g. Oberlack
2002) for isotropic turbulence.

In addition to the turbulence intensities generated by the grid, the FST scales are of
interest, and can be obtained from either spatial correlation measurements using two
hot wires or from the autocorrelation calculated from the time signal measured by a
single hot wire. Here we describe how to obtain these values from the autocorrelation,
but the definitions and methods are applicable to the spatial correlations as well.
The autocorrelation function of the streamwise fluctuating velocity and the integral
(macro) time scale (Λ) are defined as

Ruu(t
∗) ≡ u(t)u(t ′)

u2
rms

(3.2)

and

Λ =

∫ ∞

0

Ruu(t
∗) dt∗ (3.3)

respectively, where t∗ = t ′ − t and overbar denotes time averaging. The Taylor micro-
scale (τt ) may be viewed as the smallest energetic time scale and can be estimated
directly from the curvature of the autocorrelation function at t∗ = 0, but can also be
expressed as

τ 2
t ≡ 2

u2

(∂u/∂t)2
. (3.4)

This expression is derived through Taylor series expansion of the correlation coefficient
function (see e.g. Tennekes & Lumley 1997) and was used by Hallbäck, Groth &
Johansson (1989) to calculate a measured (denoted by subscript m) time scale by
computing

τ 2
tm = 2

u2

(�u/�t)2
(3.5)

for various values of �t . Thereafter the expression

(
τtm

τt

)2

= 1 + β
�t

τt

(3.6)

is fitted to data in the region 0.1 <�t/τt < 0.35, which makes it possible to accurately
determine τt . Hallbäck et al. noted that the lower limit is necessary since at small �t

the effect of electrical noise and insufficient resolution in the AD-converter give a too
low value of the microscale.

From the decay of the FST (3.1) the dissipation rate can be determined. For
isotropic turbulence it is possible to find a relation between the Taylor scale and the
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Figure 2. Turbulence decay for grids A, B and E. The curves are fitted to experimental data
according to (3.1) with b = 0.60 (for grid E only data for which x > 0 has been used). Grids A
and E: U∞ = 8 m s−1, grid B: U∞ = 12 m s−1.

dissipation rate (see e.g. Tennekes & Lumley 1997) which can be expressed as

τx,isotropic =

[
5ν(x − x0)

bU∞

]1/2

. (3.7)

It should also be noted that for isotropic turbulence there is a relation between the
Taylor scales obtained from e.g. Ruu(x

∗) and Ruu(z
∗) which is τx =

√
2τz. Similarly, the

Taylor scales obtained from the autocorrelation of u and v are related in the same
way.

3.2. Passive grids

Transition data from three different passive grids were used in this work. These are
the same grids as used in e.g. Matsubara & Alfredsson (2001). Grids A and B are
commercially available and made of steel wires with circular cross-section. These
grids have a slightly larger size than the test section and are pressed into position
at the junction of the contraction and the test section. Grid E, on the other hand,
was specially built to fit the test section and is a monoplane grid constructed out
of square cylindrical bars with a cross section of 10 mm2 and is always positioned
600 mm downstream of the start of the test section.

The variation of the streamwise turbulence intensity along the test section for these
grids is shown in figure 2 for a free-stream velocity of 8 m s−1 for grids A and E and
12 m s−1 for grid B. The lines shown in the graph are fitted using (3.1) with b = 0.6.
For grid E only data points for which x > 0 are used, corresponding to distances from
the grid larger than 20M .

The Taylor scales of the turbulence behind these grids were determined both from
autocorrelation X-probe measurements (τt (u), τt (v)) and spatial correlations using
two single hot wires (τz(u)). The results obtained at the leading edge are shown in
table 2. First one may note that for all grids Tv <Tu. Secondly we see that the two
completely different methods to determine the transverse Taylor scale (τt (v) and τz(u))
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Grid x/M Tu (%) Tv (%) τx(u) (mm) τx(v) (mm) τz(u) (mm)

A 44 2.2 1.9 8.7 5.0 5.2
B 70 1.5 1.3 7.0 4.5 5.0
E 20 6.1 5.0 – – 4.1

Table 2. Turbulence characteristics of grids A, B, and E measured at the leading
edge of the plate at U∞ = 8 m s−1.
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0.
8 
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Figure 3. Active grid (G) with main dimensions.

give similar results for grids A and B.† Finally we see that the longitudinal Taylor
scale is approximately a factor of 1.5 larger than the transverse scale. This can be
compared to the theoretical factor for isotropic turbulence which is

√
2.

3.3. Active grid

The active grid consists of a rectangular frame with dimension 1.2 × 0.8 m2 (width ×
height, identical with the dimension of the MTL test section). Each side of this frame
is separated from the others and consists of a brass pipe with an outer diameter of
15 mm (wall thickness = 1 mm) and has two inlets for secondary air. A total of 33
brass pipes, 20 vertically and 13 horizontally, were soldered to the frame. These pipes
have a diameter of 5 mm (wall thickness 0.9 mm) and are located to give a mesh
width M = 50 mm, which corresponds to a geometrical solidity (Sg) of 0.19. The jet
orifices have a diameter of 1.5 mm and are directed upstream in the present setup. The
orifices are concentrated in the middle section of the grid and there is a total of 254
(12 horizontally × 12 and 11 vertically × 10, cf. figure 3 for an illustration of the grid
geometry). A fine-meshed screen (mosquito type) was positioned on the downstream
side of the frame in order to improve the homogeneity of the flow.

The secondary flow is supplied to the grid through flexible rubber tubing connected
to the inlets at the frame. The air is driven by a modified vacuum cleaner (1 kW)
and the injection rate was regulated by a transformer. In the results sections of the
present study many different injection rates were used, but in this section results from
three different rates (none, moderate and high) will be shown. These are denoted
as G0, G1 and G2, which correspond to an upstream injection of (0, 5, 10) l s−1 or
an individual jet velocity of (0, 11, 21) m s−1, respectively. All the characteristics of
the grid presented in this section were obtained at a free-stream velocity of 5 m s−1

† The time scales were transformed to streamwise length scales through Taylor’s hypothesis
(frozen turbulence approximation), e.g. τx = U∞τt .
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Figure 4. Turbulence decay for different injection rates. The curves are fitted to
experimental data according to (3.1) with b =0.60.
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corresponding to a maximum injection flow rate of approximately 0.5% through the
active part of the grid. In the transition experiments the maximum injection rate is
obtained at U∞ = 2 m s−1, and corresponds to less than 1.5%.

3.3.1. Turbulence decay

In figure 4 the downstream development of Tu for the three injection cases G0, G1
and G2 is shown. The grid distance upstream of the leading edge was fixed here at
x = −1400 mm corresponding to 28M from the leading edge of the plate. The curve
fits are done using (3.1) with b = 0.6. This figure clearly shows the increase of Tu with
increasing injection rate for all downstream positions from the grid.

In figure 5 the isotropy measure vrms/urms behind the active grid is plotted as a
function of the downstream distance for different injection rates. The figure shows a
nearly isotropic turbulence for all three cases at x = −400 mm, which is in agreement
with the rule of thumb that 20M is needed to establish nearly isotropic turbulence
behind a grid. All three cases have an isotropy measure above 0.9 and the highest
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Tu achieves the highest degree of isotropy. According to Groth & Johansson (1988)
several investigations have reported that the turbulence behind a grid retains a small
degree of anisotropy over a very large downstream distance (up to 400M).

The pressure gradient in the boundary layer was adjusted without a grid in the test
section. The presence of the grids did not appear to affect the pressure gradient and
figure 6 shows the pressure coefficient (Cp) plotted versus the downstream distance
for three different injection rates of the active grid. As can be seen the mean flow
condition is unchanged despite the different injection rates.

3.3.2. Turbulence scales

For the active grid the autocorrelation as well as the Taylor microscale were
determined from a 60 s time series sampled at a frequency of 50 kHz. The integral
scale was also determined from spanwise spatial correlation measurements using two
hot wires. For the calculation of Λ through (3.3) the integration limit was truncated
at t∗ = 0.1 s for the autocorrelation and z∗ = 70 mm for the spatial correlation. In
figure 7 the downstream evolution of τ and Λ are plotted. It is clear that both scales
increase with downstream distance. The integral length scale obtained from the spatial
correlation (i.e. spanwise correlation of the streamwise velocity) is smaller than that
obtained from the autocorrelation, which is in agreement with theoretical results for
isotropic turbulence. The Taylor length scale increases with increasing injection, which
is in agreement with the results in Gad-El-Hak & Corrsin (1974). A similar trend is
apparent for the integral scale obtained from the spatial correlation measurements.
For this free-stream velocity (5 m s−1) the Taylor scale at the leading edge is in the
interval 7–10 mm depending on the injection rate and the position of the grid.

3.3.3. Energy spectra

The energy spectra give a good overview of the turbulent scales for the different
injection rates. If the energy distributions over the frequencies are the same it is
likely that they also share the same energetic scales, i.e. turbulent length scales. When
plotting the energy as f E versus the frequency (f ) for the no-injection case it is clearly
seen that the main energy content moves towards lower frequencies with downstream
distance, indicating an increase in size of the integral length scale (most energetic
scale).
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The energy spectra (normalized to make the total kinetic energy equal to unity) for
all three injection rates are compared in figure 8 at different downstream positions.
This figure shows that the variation of the energy distribution is small for the
different injection rates, although a slight shift towards lower frequencies can be seen
for increasing injection. It is also clearly seen that the maxima in the distributions
move towards lower frequencies with downstream distance. A similar increase in the
turbulence scales was observed in figure 7.
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3.4. Free-stream turbulence scales in the transition experiments

In the previous sections we have described data for the different grids used in the
present transition experiments. Each grid has been thoroughly evaluated at one free-
stream velocity. According to (3.7) the Taylor scale for a given grid varies as U−1/2

∞
which for the present range of free-stream velocities (2–14 m s−1) means a factor of
2.5 between the highest and lowest velocity. On the other hand the boundary layer
thickness varies in the same way, so the ratio between the free-stream scales and the
boundary layer thickness will not be affected by changing the free-stream velocity.
What is also shown by (3.7) is that the Taylor scale increases with increasing distance
from the grid. Each of the passive grids in the transition experiment was located
at a specific x-position throughout the experiment, so in these cases there was no
variation due to changes in position. The active grid on the other hand was moved
to different positions upstream of the leading edge. This together with a variation
with the injection rate gave rise to an almost 50% variation of the Taylor scale at the
leading edge, which should be kept in mind when interpreting the transition results.

4. Intermittency estimation procedure
In an analysis of transitional flows, discrimination between turbulent and laminar

flow is valuable not only to estimate the intermittency (γ ) function but also to
obtain separate statistics of the measured data for laminar and turbulent cases, i.e.
conditional sampling. In order to do this there are two essential decisions that have
to be made by the evaluator, i.e. choice of detector(D)/criterion (C) function, and the
determination of threshold value. The detector function is created from the velocity
signal by some operation, e.g. first or second derivative or a high-pass filter, in order
to sensitize the signal to increase its discriminatory capability. The criterion function
is based on the detector function and is the function that is exposed to the selection
(whether the signal is laminar or turbulent), which is based on the threshold value. So
far there is no accepted universal procedure for the two decisions mentioned above.
One difficulty is that the intermittency estimate is sensitive to the threshold value
(typically an exponential dependence), which makes the choice of method essential
and either more or less suitable for a given flow.

Hedley & Keffer (1974) discussed the difficulties in intermittency estimation and
summarized many of the different D-functions which had been used by different
researchers. These ideas were further developed by Kuan & Wang (1990) who devised
a general method to determine the threshold, the so-called ‘dual-slope method’. In this
method the second derivative of the velocity signal was adopted as the D-function.
The cumulative intermittency distribution as function of the threshold value appeared
to consist of two straight lines of different slopes when plotted in a semilogarithmic
diagram. The intersection of these lines was then chosen as the threshold value. With
the data presented in this paper the change of slope was not always clear, making it
difficult to determine the threshold in a clear cut manner. In our case the original idea
in Hedley & Keffer (1974) of using the region of maximum curvature as threshold
value may be more appropriate.

However, in the present work a slightly different approach is taken which also takes
into account the downstream development of the fluctuations in the laminar parts
of the signal. In figure 9 an example of the intermittency estimation is illustrated.
Figure 9(a) shows a velocity signal (u) with the absolute value of the corresponding
high-pass filtered signal (uh). The cut-off frequency (fcut) for the filtering was chosen
as fcut = U∞/(5δ99), where δ99 is the Blasius-based boundary layer thickness. This
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is the fitted line to obtain the intermittency at the intercept with the abscissa. The circle
determines the value of u∗

s .

expression for fcut was selected through visual inspection of many different signals
and is naturally based on the convective velocity (∝ U∞) and the streamwise scale
(∝ δ99) of the streaky structures (cf. Matsubara & Alfredsson 2001). The C-function
is obtained by short-time averaging of the D-function, in order to eliminate the zeros
appearing in the turbulent regions. The threshold value (u∗

s ) that will discriminate the
true turbulence from the noise is determined by varying the level of us in figure 9(a)
on the C-function, producing an indicator (I) function according to

Ij (ti) =

{
1 when C(ti) � uj

s

0 when C(ti) < uj
s .

(4.1)

Here i =1 . . . n; and j = 1 . . . m, where n and m are the number of discrete points
of the signal and the number of threshold values, respectively. From the I-function,
γ is calculated as function of us which is plotted in figure 9(b) as a solid line. The
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dashed line corresponds to

γ (us) = c exp(αus),

which is fitted to the calculated values between the dotted vertical lines. The intercept
with the ordinate axis is used as the ‘true’ value of γ . The corresponding threshold
value (u∗

s ) giving the same γ is marked in the figure by a circle.

5. Experimental data analyses
The presentation of the experimental results is divided into three sections. The first

part deals with the streamwise disturbance energy growth. The streamwise disturbance
energy level is shown to scale with Rex and the influence of the level of Tu is discussed.
The second part deals with quantitive results from the transition zone, obtained from
intermittency measurements. The correlation between a transitional Reynolds number,
based on the downstream distance from the leading edge, and the FST level is shown
to agree according to the theoretical results by Andersson et al. (1999). Finally
the present intermittency data are compared with two previously published models
of the transition zone (Narasimha 1957; Johnson & Fashifar 1994). The universal
intermittency functions according to these models are tested and parameters are
proposed based on the present data. A new expression with a sound physical basis
for the spot production rate, based on the present measurements, is also proposed.

5.1. Disturbance energy growth

In figure 10(a) the streamwise disturbance energy (E = u2
rms/U 2

∞), measured at y/δ∗ =
1.4 (δ∗ = 1.72

√
xν/U∞ is the theoretical laminar displacement thickness of the Blasius

boundary layer), is plotted as function of the Reynolds number (defined as Rex =
xU∞/ν throughout this paper). A typical curve shows an initial, nearly linear, growth
after which the disturbance energy reaches a maximum and then asymptotes to a
constant level around E = 0.007. By inspection it is found that the maximum is closely
related to the point γ = 0.5, i.e. at this point the flow consists of alternating laminar
portions and turbulent spots. The higher the Tu the smaller the Rex for which the
maximum occurs, i.e. transition occurs for smaller Rex . Another feature of figure 10(a)
is that the amplitude of the maximum increases with increasing Tu, or equivalently
the maximum decreases the higher the associated Rex .

There may be several reasons for the variation of the maximum value with Rex . In
the turbulent regions the y-position in terms of viscous units may change with Rex

and thereby the difference in the mean velocity as compared with the laminar profile.
A similar effect could change the turbulence intensity measured in the turbulent
regions. Other possibilities include changes in streak spacing with Tu which may
change the growth or that transition occurs at lower streak amplitudes for higher Re.
However in order to get a full understanding of this behaviour further experiments
and analysis are required.

In figure 10(b) the measured points are plotted with the x-axis scaled with the
interpolated Rex-value for which E = 0.01 or equivalently urms = 0.1U∞. As expected
all points fall onto one curve; however the most interesting feature is that a line
fitted through the points will cross the abscissa at some positive value of Rex (cf. the
straight white/black line in figure 10b). This indicates that there is an initial region at
the leading edge where the disturbances grow slower than further downstream. One
possibility is that this is due to the receptivity process which needs a certain distance
before it is completed and the disturbances have adjusted to the boundary layer.
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Figure 10. (a) Streamwise turbulent energy (E = u2
rms/U 2

∞) as function of Rex for various free-
stream turbulence levels. Measurements are made at y/δ∗ = 1.4. (b) Measured points in
(a) where the horizontal axis is scaled with the position where urms = 0.1U∞ (i.e. E = 0.01). The
white/black straight line is fitted to the straight part of the data.

Figure 11 shows a measure of the disturbance growth (G = dE/dRex), i.e. the slope
of the linear region of a typical curve in figure 10(a). The slope is calculated by
fitting a straight line in the interval of E between 0.0025 and 0.0125. Here, the lower
limit is determined by the above mentioned receptivity region where the disturbance
evolution has a different slope, and the upper energy limit is where the intermittency
starts to increase from zero (for E < 0.0125 γ is always less than 0.1) and deviation
from linear growth is to be expected. It can be seen that G is proportional to Tu2.
This result strongly indicates that there is a linear relation between the level of FST
(forcing) and the disturbance amplitude (response) in the boundary layer. Note that
the correlation between G and Tu upon integration becomes

E ∝ Tu2Rex,

which is exactly the relation proposed by Andersson et al. (1999) based on transient
growth theory together with the assumption of an initial energy quantity being
proportional to the FST energy.
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Figure 11. Slope of the linear growth in figure 10(a) versus Tu2. The different symbols
(�, +, �, �) correspond to the different turbulence generating grids (B, A, G, E), respectively.

5.2. The transition zone

In order to investigate the transition zone further the intermittency function for the
different levels of Tu was determined according to the procedure described in § 4. It
is not obvious how to chose the best y-position to evaluate the intermittency. The
following results were obtained by evaluating the intermittency at a position in the
boundary layer where y/δ∗ = 1.4. However, as was shown in Matsubara, Alfredsson &
Westin (1998) the intermittency is fairly constant up to at least y/δ∗ = 2.

Figure 12(a) shows the intermittency curves for seven different intensities of the
FST: Tu = 1.4%, 2.2%, 3.3%, 3.9%, 5.3%, 5.7%, 6.7%. They are shown as function of
Rex/Rex,γ = 0.5, i.e. they will all cross at the point [1, 0.5] in the plot. The figure shows
that the relative length of the transition region increases with increasing turbulence
level. Figure 12(b), on the other hand, shows that all the intermittency curves of the
grid G cases that satisfy Tu � 2.6% collapse on a universal function.

The length of the transition zone is also an important variable for modelling as
well as for a basic understanding of the transition process. In our experiments this
length can be estimated from the intermittency function and we chose the values of
γ = 0.1 and 0.9 to define the position where transition starts and ends, respectively.
In the same way we define the middle of the transition zone as the position where
γ = 0.5. In figure 13(a) the transition length is made non-dimensional in terms of
a Reynolds number (�Retr = Rex,γ =0.9 − Rex,γ = 0.1) and plotted as function of the
Reynolds number of the middle of the transition zone (Rex,γ = 0.5 = Retr), which we
denote as the transitional Reynolds number. If we now estimate that the x-position
where γ = 0.5 is the average value of those positions where γ = 0.1 and 0.9, we can
introduce the shaded area in figure 13(a) which denotes non-admissible values of
the transition-length Reynolds number. This relation states that �Retr < 2Retr and is
arrived at from pure geometrical reasoning. The data from grids E and G appear to
collapse on a single straight line whereas the data from grid A and grid B are above
that line and thereby show a slightly longer transition zone. There may be several
reasons for the differences between the grids, since the transition location is the result
of a complex interaction of many processes: receptivity, algebraic growth as well as
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Figure 12. (a) Intermittency functions for different grids and Tu levels (1.4, 2.2, 3.3,
3.9, 5.3, 5.7, 6.7)%. (b) Intermittency functions from grid G and Tu � 2.6%.

triggering and growth of secondary instability which all to some extent depend on
the details of the FST. Note also that the line intercepts the vertical axis at a value
of about 3.9 × 104, showing that there is a minimum length of the transition zone at
high disturbance levels also. This is consistent with the idea of a minimum Reynolds
number for self-sustained turbulence (see e.g Hall & Gibbings 1972).

The linear variation of �Retr with Rex,γ = 0.5 can also be used to determine an
expression for the relative length of the transition region. If we assume that there is
a linear relation as in figure 13(a) this can be expressed as

�Retr = �Retr,min + kRetr (5.1)

where �Retr,min = 3.9 × 104 is the intercept of the line with the ordinate axis and
k = 0.33 is the slope. With this relation we can easily calculate the relative length of
the start and end of transition such that

x0.9

x0.5

= 1 +
k

2
+

�Retr,min

2Retr

(5.2)

and
x0.1

x0.5

= 1 − k

2
− �Retr,min

2Retr

(5.3)
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Figure 13. (a) Length of transition zone versus Rex,γ = 0.5. The shaded area denotes the non-
admissable region for which �Retr > 2Rex,tr. (b) Downstream position where γ = 0.1 (lower set
of symbols) and 0.9 (upper set) normalized with the position where γ =0.5. The dotted lines
correspond to 1 ± 1

2
k where k = 0.33 (see equations (5.2) and (5.3)). See caption of figure 11

for symbols.

As can be seen, the relative length tends to a constant value for large transition
Reynolds numbers whereas it becomes larger for small Retr. This is illustrated in
figure 13(b) where the individual values are plotted. The assumption that the position
of γ = 0.5 is in the middle between the values of γ = 0.1 and 0.9 seems to be fairly
accurate.

There have been other attempts to relate the length of the transition zone to
the transition Reynolds number. For instance Dhawan & Narasimha (1957) and
later Narasimha (1984) suggested a power-law relation such that

�Retr = αReβ
tr. (5.4)

The values of α and β given in Narasimha (1984) were 9.0 and 0.75, respectively,
where they used the levels of γ =0.25 and 0.75 to determine the length of the
transition zone. However according to equation (5.1) there is a minimum length of
the transition zone and therefore (5.4) must diverge from the experimental data for
small values of Retr, i.e. high levels of Tu. In figure 14 the same data as in figure 13
are plotted, but now in logarithmic format and with (�Retr − �Retr,min) as function of
Retr, where �Retr,min = 3.9 × 104. We also plot the data from grid G (shown as dots),
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Figure 14. Correlation between the length of transition zone and the Reynolds number at the
end of transition. The symbols (�, +, �, �) correspond to the different turbulence generating
grids (B, A, G, E) using γ =0.1 and 0.9 to determine the length of the transition zone, whereas
the bold dots correspond to the same case as � but where the transition length was determined
using γ =0.25 and 0.75. �Retr,min for the two cases is 3.9 × 104 and 2.1 × 104, respectively.
——, The best fit to the �; – – –, the function suggested by Narasimha (1984). Note that this
line should fit the data obtained using γ = 0.25 and 0.75.

using the shorter transition zone (i.e. 0.25 <γ < 0.75) from Narasimha (1984). In
that case a different �Retr,min ( = 2.1 × 104), belonging to the corresponding definition
of the transition zone length, has been used. Also plotted in the figure are the two
expressions (5.1) and (5.4). First of all it is clear that the present data follow expression
(5.1). Equation (5.4) with the values suggested by Narasimha (1984) should follow
the data obtained with 0.25 <γ < 0.75; however the length of the transition zone is
over-predicted by nearly a factor of two. For small values of Retr or high values of
Tu the Narasimha (1984) curve becomes unphysical as expected.

The intermittency data can also be used to estimate the transition Reynolds number
Retr, which we define to be the Reynolds number for which γ = 0.5. Figure 15 shows
the transitional Reynolds number as function of Tu for all four grids. In both plots
the line corresponding to

Rex,γ=0.5 = CTu−2 (5.5)

is also shown, which is seen to give a good representation of the data. This is in
agreement with the suggestion by Andersson et al. (1999) that for FST-induced transi-
tion the breakdown to turbulence occurs when the streaky disturbances in the
boundary layer reach a certain (high) amplitude (This assumption is, however, not
fully supported by the results in figure 10(a)). They also assumed that the input energy
is proportional to the FST energy and that the streaky structures grow in amplitude
with the optimal rate. These assumptions lead to Retr being proportional to Tu−2.
In that paper this idea was substantiated by comparisons with experimental data by
Matsubara, Yang & Voke, and Roach & Brierley, as well as with the semiempirical
correlation curve by van Driest & Blumer (for detailed references see Andersson et al.
1999). The present data give C = 196, compared to C = 144 suggested in Andersson
et al. However, there are several factors that influence the C-value, such as the
definition of the transitional Reynolds number, the degree of anisotropy, the leading-
edge suction peaks, the small deviation from a zero pressure gradient throughout the
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stream turbulence level. (b) Logarithmic axes of the data in (a). See caption of figure 11 for
symbols. Solid line is a curve fit to the symbols according to equation (5.5).

test section, scales and energy spectrum of the free-stream turbulence etc. It should
be mentioned that with the transitional Reynolds number defined where γ = 0.1, we
obtain a C-value of about 126, i.e. below the value proposed by Andersson et al.

5.3. Intermittency models

Emmons (1951) formulated a theory which describes the relation between a spot pro-
duction function [g(x, z, t)] and the intermittency factor [γ (x)], based on probability
considerations. For a steady two-dimensional flow this relation is

γ (x) = 1 − exp

[
−

∫
R

g(x0) dx0 dz0 dt0

]
, (5.6)

where R is the dependence volume (spot sweep volume) assumed to be a cone with
straight generators. However, due to the lack of available experimental data Emmons
suggested a simple assumption about g(x), namely that it be independent of x. Six
years later Narasimha (1957) improved this assumption based on new observations.
These observations suggested that laminar breakdown in a two-dimensional boundary
layer is nearly point-like, and that the spots originate in a restricted region (see
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Figure 16. Universal intermittency functions corresponding to equations (5.8) (Narasimha
model) and (5.9) (Johnson model) compared with all the experimental data shown as circles.

Dhawan & Narasimha 1957 for an extended version of Narasimha 1957). Dhawan &
Narasimha (1957) argue that g(x) should have a maximum at some location and
they state that experimentally this location turns out to be the position of the start
transition (xt). Assuming a Gaussian distribution to represent g(x) with its centre
at xt, they showed that the best fit of the Gaussian curve to experimental data
is achieved when the standard deviation approaches zero (i.e. nearly a Dirac delta
function, δ(x)). Applying g(x0) = nδ(x0 − xt) in (5.6) Narasimha (1957) derived the
following expression:

γ (x) = 1 − exp

[
−(x − xt)

2 nσ

U∞

]
, (5.7)

where nσ/U∞ is assumed constant with n and σ being the turbulent spot production
rate per unit length in the spanwise direction and Emmon’s dimensionless spot pro-
pagation parameter, respectively. Furthermore, he showed that γ can be expressed as
a unique function of ξ according to

γ (x) = 1 − exp[−AN (ξ + BN )2], (5.8)

where ξ = (Rex − Retr)/�Retr, and AN and BN are constants.
Johnson & Fashifar (1994) used a different approach resulting in an ordinary

differential equation for γ . Furthermore, they assumed nσ/U∞ to increase linearly
with x resulting in a unique function for γ like (5.8) but with the exponent ξ appearing
as a power of 3 (instead of 2) according to

γ (x) = 1 − exp[−AJ (ξ + BJ )3], (5.9)

where AJ and BJ are constants.
In figure 16 all γ -distributions corresponding to different Tu-levels are plotted and

they all show a common distribution. In the same figure both the Narasimha and the
Johnson γ -functions are shown as dashed and solid lines, respectively. The best fit
to all data results in (AN, BN ) = (1.42, 0.72) and (AJ , BJ ) = (0.60, 1.05), respectively,
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where the Johnson model is seen to give the best representation. It can be noted that
an exponent slightly larger than 3 would give an even better fit to the data.

Finally, by introducing Rex in (5.7) the Narasimha model may be transformed to

γ (x) = 1 − exp[−(Rex − Rex,t)
2n̂σ ], (5.10)

where n̂= nν2/U 3
∞ is a dimensionless spot production parameter. Note that com-

parison with (5.8) reveals the relation n̂σ ∝ �Re−2
tr .

An interesting correlation in this context is the one between the position where
transition starts (Retr,start) and the Tu-level. For this, one has to define the start of
transition. Mayle (1991) (see his Appendix B) outlines a method to determine this
position based on the function

F (γ ) = [− log(1 − γ )]1/p

suggested in Narasimha (1957) (where p = 2). Through straight-line curve fitting in
the range 0.1 <γ < 0.9, Rex,t (in (5.10)) is determined by the Rex value where the line
crosses the ordinate (i.e. F (γ ) = 0). An example is shown in figure 17 where F (γ ) for
both the Narasimha (p =2) and the Johnson (p =3) models are plotted.

This procedure is repeated for all cases (and both models) and in figure 18 Retr,start

is plotted versus the Tu-level together with the Rex where γ = 0.1 (+symbols). A best
fit to the +symbols according to Retr,start = KTum with m = −2 is calculated, resulting
in K = 126, and compared with the model by Mayle corresponding to (K, m) = (1148,

−5/4). From the figure we can conclude that Rex,γ =0.1 corresponds well with the
Narasimha model and that the Johnson model defines the start of transition to
be slightly earlier (i.e. for a lower γ -value). For high Tu the Johnson model even
produced some values of the start of transition that were located upstream of the
leading edge of the plate. These are of course excluded from figure 18.

From (5.10) it is clear that the slope of the curve corresponds to
√

n̂σ , which is
related to the transition length as stated above. In figures 19(a) and 19(b) the non-
dimensional spot production rate (n̂σ , obtained from the Narasimha model) is plotted
versus �Retr and Tu, respectively. Figure 19(a) simply verifies the proportionality
stated above and the solid line in the figure corresponds to n̂σ = 1.52�Re−2

tr . With
this result, together with (5.5) and (5.1), it is possible to write down an expression for
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the variation of n̂σ with Tu such that

n̂σ =
1.52

�Re2
tr,min

(
1 +

kC

�Retr,min

Tu−2

)−2

(5.11)

where the values of the constants have been given earlier but are repeated here:
k = 0.33, C = 196 and �Retr,min = 3.9 × 104. In figure 19(b) we compare the Mayle
(1991) model (n̂σ = 4.7 × 10−8Tu7/4) with the present data. Also included in the figure
is the curve obtained from (5.11). It is seen that this expression follows the data better
than the Mayle model, and, especially, seems to give the correct behaviour for low
Tu, where (5.11) shows n̂σ to become proportional to Tu4. For levels of Tu less than
0.5%–1%, TS-waves start to dominate the transition process and then (5.11) ceases
to be valid. On the other hand, high values of Tu give a constant value of n̂σ . This
can be seen as a result of a minimum Reynolds number for transition, i.e. for high
Tu a further increase does not lower Retr and hence n̂σ appears to stay constant.

6. Summary and conclusions
This paper describes an extensive set of measurements of free-stream-turbulence-

induced transition for turbulence levels ranging from 1.4% to 6.7% of the free-stream
velocity. The following points summarize the results:

(i) A procedure to estimate the intermittency of a velocity signal has been deve-
loped and implemented successfully to determine flow properties in the transitional
zone.

(ii) There is an initial region at the leading edge where the disturbances grow
more slowly than further downstream, which is hypothesized to be connected to the
receptivity process where the FST scales need some distance to adjust to the boundary
layer.

(iii) In the initially laminar but disturbed region, it has been found that the distur-
bance energy (E = u2

rms/U 2
∞) is proportional to Tu2Rex . This verifies the theoretical

results of Andersson et al. (1999) and Luchini (2000) that disturbances should grow
as Rex as well as the hypothesis by Andersson et al. (1999) that there is a linear
response of the boundary layer to the disturbance energy of the FST.

(iv) The transitional Reynolds number was found to vary as Tu−2.
(v) It was found that the non-dimensional length of the transitional zone has a

minimum value and it increases linearly with Retr. This result casts doubt on earlier
attempts to model the length of the transitional zone.

(vi) For Tu � 2.5% the relative length of the transitional zone increases with
increasing Tu.

(vii) The intermittency function is found to have a relatively well-defined dis-
tribution, valid for all Tu.

We may also conclude that the present results seem to confirm that the initial part
of the transition scenario is due to algebraically growing disturbances and that the
prediction method of Andersson et al. (1999) rests on a sound physical basis.

Finally we were able to relate Retr and Tu to the spot production rate in a way
which gives a better physical description of the transitional zone than has previously
been obtained.
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